Format

Send to

Choose Destination
Endocrinology. 2017 Sep 1;158(9):2826-2836. doi: 10.1210/en.2017-00200.

Effects of Endogenous Oxytocin Receptor Signaling in Nucleus Tractus Solitarius on Satiation-Mediated Feeding and Thermogenic Control in Male Rats.

Author information

1
Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
2
Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
3
Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104.

Abstract

Central oxytocin receptor (OT-R) signaling reduces food intake and increases energy expenditure, but the central sites and mechanisms mediating these effects are unresolved. We showed previously that pharmacological activation of OT-R in hindbrain/nucleus tractus solitarius (NTS) amplifies the intake-inhibitory effects of gastrointestinal (GI) satiation signals. Unexplored were the energetic effects of hindbrain OT-R agonism and the physiological relevance of NTS OT-R signaling on food intake and energy expenditure control. Using a virally mediated OT-R knockdown (KD) strategy and a range of behavioral paradigms, this study examined the role of endogenous NTS OT-R signaling on satiation-mediated food intake inhibition and thermogenic control. Results showed that, compared with controls, NTS OT-R KD rats consumed larger meals, were less responsive to the intake-inhibitory effects of a self-ingested preload, and consumed more chow following a 24-hour fast. These data indicate that NTS OT-R signaling is necessary for normal satiation control. Whereas both control and NTS OT-R KD rats increased core temperature following high-fat diet maintenance (relative to chow maintenance), the percent increase in core temperature was greater in control compared with NTS OT-R KD rats during the light cycle. Hindbrain oxytocin agonist delivery increased core temperature in both control and NTS OT-R KD rats and the percent increase relative to vehicle treatment was not significantly different between groups. Together, data reveal a critical role for endogenous NTS OT-R signaling in mediating the intake-inhibitory effects of endogenous GI satiation signals and in diet-induced thermogenesis.

PMID:
28575174
PMCID:
PMC5659667
DOI:
10.1210/en.2017-00200
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for PubMed Central
Loading ...
Support Center