Format

Send to

Choose Destination
ACS Nano. 2017 Jun 27;11(6):6440-6450. doi: 10.1021/acsnano.7b02999. Epub 2017 Jun 12.

Swelling of Graphene Oxide Membranes in Aqueous Solution: Characterization of Interlayer Spacing and Insight into Water Transport Mechanisms.

Author information

1
Department of Civil and Environmental Engineering, University of California , Berkeley, California 94720, United States.
2
The Molecular Foundry, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.

Abstract

Graphene oxide (GO) has recently emerged as a promising 2D nanomaterial to make high-performance membranes for important applications. However, the aqueous-phase separation capability of a layer-stacked GO membrane can be significantly limited by its natural tendency to swell, that is, absorb water into the GO channel and form an enlarged interlayer spacing (d-spacing). In this study, the d-spacing of a GO membrane in an aqueous environment was experimentally characterized using an integrated quartz crystal microbalance with dissipation and ellipsometry. This method can accurately quantify a d-spacing in liquid and well beyond the typical measurement limit of ∼2 nm. Molecular simulations were conducted to fundamentally understand the structure and mobility of water in the GO channel, and a theoretical model was developed to predict the d-spacing. It was found that, as a dry GO membrane was soaked in water, it initially maintained a d-spacing of 0.76 nm, and water molecules in the GO channel formed a semiordered network with a density 30% higher than that of bulk water but 20% lower than that of the rhombus-shaped water network formed in a graphene channel. The corresponding mobility of water in the GO channel was much lower than in the graphene channel, where water exhibited almost the same mobility as in the bulk. As the GO membrane remained in water, its d-spacing increased and reached 6 to 7 nm at equilibrium. In comparison, the d-spacing of a GO membrane in NaCl and Na2SO4 solutions decreased as the ionic strength increased and was ∼2 nm at 100 mM.

KEYWORDS:

graphene oxide; interlayer spacing; membrane; swelling; water transport

PMID:
28570812
DOI:
10.1021/acsnano.7b02999

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center