Send to

Choose Destination
eNeuro. 2017 May 24;4(3). pii: ENEURO.0381-16.2017. doi: 10.1523/ENEURO.0381-16.2017. eCollection 2017 May-Jun.

Urothelial Tight Junction Barrier Dysfunction Sensitizes Bladder Afferents.

Author information

Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261.
Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261.
Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261.


Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic voiding disorder that presents with pain in the urinary bladder and surrounding pelvic region. A growing body of evidence suggests that an increase in the permeability of the urothelium, the epithelial barrier that lines the interior of the bladder, contributes to the symptoms of IC/BPS. To examine the consequence of increased urothelial permeability on pelvic pain and afferent excitability, we overexpressed in the urothelium claudin 2 (Cldn2), a tight junction (TJ)-associated protein whose message is significantly upregulated in biopsies of IC/BPS patients. Consistent with the presence of bladder-derived pain, rats overexpressing Cldn2 showed hypersensitivity to von Frey filaments applied to the pelvic region. Overexpression of Cldn2 increased the expression of c-Fos and promoted the activation of ERK1/2 in spinal cord segments receiving bladder input, which we conceive is the result of noxious stimulation of afferent pathways. To determine whether the mechanical allodynia observed in rats with reduced urothelial barrier function results from altered afferent activity, we examined the firing of acutely isolated bladder sensory neurons. In patch-clamp recordings, about 30% of the bladder sensory neurons from rats transduced with Cldn2, but not controls transduced with GFP, displayed spontaneous activity. Furthermore, bladder sensory neurons with tetrodotoxin-sensitive (TTX-S) action potentials from rats transduced with Cldn2 showed hyperexcitability in response to suprathreshold electrical stimulation. These findings suggest that as a result of a leaky urothelium, the diffusion of urinary solutes through the urothelial barrier sensitizes bladders afferents, promoting voiding at low filling volumes and pain.


DRG neurons; afferent innervations; interstitial cystitis/bladder pain syndrome; pain; tetrodotoxin; urinary bladder

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center