Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biomed Inform. 2017 Jul;71:91-109. doi: 10.1016/j.jbi.2017.05.016. Epub 2017 May 26.

RysannMD: A biomedical semantic annotator balancing speed and accuracy.

Author information

1
Laboratory for Systems, Software and Semantics (LS3), Ryerson University, Ontario, Canada(1). Electronic address: jcuzzola@ryerson.ca.
2
Faculty of Organizational Sciences (FOS), University of Belgrade, Belgrade, Serbia(2). Electronic address: jeljov@gmail.com.
3
Laboratory for Systems, Software and Semantics (LS3), Ryerson University, Ontario, Canada(1). Electronic address: bagheri@ryerson.ca.

Abstract

Recently, both researchers and practitioners have explored the possibility of semantically annotating large and continuously evolving collections of biomedical texts such as research papers, medical reports, and physician notes in order to enable their efficient and effective management and use in clinical practice or research laboratories. Such annotations can be automatically generated by biomedical semantic annotators - tools that are specifically designed for detecting and disambiguating biomedical concepts mentioned in text. The biomedical community has already presented several solid automated semantic annotators. However, the existing tools are either strong in their disambiguation capacity, i.e., the ability to identify the correct biomedical concept for a given piece of text among several candidate concepts, or they excel in their processing time, i.e., work very efficiently, but none of the semantic annotation tools reported in the literature has both of these qualities. In this paper, we present RysannMD (Ryerson Semantic Annotator for Medical Domain), a biomedical semantic annotation tool that strikes a balance between processing time and performance while disambiguating biomedical terms. In other words, RysannMD provides reasonable disambiguation performance when choosing the right sense for a biomedical term in a given context, and does that in a reasonable time. To examine how RysannMD stands with respect to the state of the art biomedical semantic annotators, we have conducted a series of experiments using standard benchmarking corpora, including both gold and silver standards, and four modern biomedical semantic annotators, namely cTAKES, MetaMap, NOBLE Coder, and Neji. The annotators were compared with respect to the quality of the produced annotations measured against gold and silver standards using precision, recall, and F1 measure and speed, i.e., processing time. In the experiments, RysannMD achieved the best median F1 measure across the benchmarking corpora, independent of the standard used (silver/gold), biomedical subdomain, and document size. In terms of the annotation speed, RysannMD scored the second best median processing time across all the experiments. The obtained results indicate that RysannMD offers the best performance among the examined semantic annotators when both quality of annotation and speed are considered simultaneously.

KEYWORDS:

Automated semantic annotation; Biomedical ontologies; Entity linking; Medical terminology; Natural language processing; UMLS metathesaurus

PMID:
28552401
DOI:
10.1016/j.jbi.2017.05.016
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center