Format

Send to

Choose Destination
Sci Rep. 2017 May 25;7(1):2409. doi: 10.1038/s41598-017-02217-x.

Droplet Digital PCR versus qPCR for gene expression analysis with low abundant targets: from variable nonsense to publication quality data.

Author information

1
Bio-Rad Laboratories, Inc., Hercules, CA, 94547, USA. Sean_Taylor@bio-rad.com.
2
Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 boul. des Forges, Trois-Rivières, QC, G9A 5H7, Canada.

Abstract

Quantitative PCR (qPCR) has become the gold standard technique to measure cDNA and gDNA levels but the resulting data can be highly variable, artifactual and non-reproducible without appropriate verification and validation of both samples and primers. The root cause of poor quality data is typically associated with inadequate dilution of residual protein and chemical contaminants that variably inhibit Taq polymerase and primer annealing. The most susceptible, frustrating and often most interesting samples are those containing low abundant targets with small expression differences of 2-fold or lower. Here, Droplet Digital PCR (ddPCR) and qPCR platforms were directly compared for gene expression analysis using low amounts of purified, synthetic DNA in well characterized samples under identical reaction conditions. We conclude that for sample/target combinations with low levels of nucleic acids (Cq ≥ 29) and/or variable amounts of chemical and protein contaminants, ddPCR technology will produce more precise, reproducible and statistically significant results required for publication quality data. A stepwise methodology is also described to choose between these complimentary technologies to obtain the best results for any experiment.

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center