Format

Send to

Choose Destination
Anal Chem. 2017 Jun 20;89(12):6455-6462. doi: 10.1021/acs.analchem.7b00353. Epub 2017 Jun 9.

Analysis of Three Epoetin Alpha Products by LC and LC-MS Indicates Differences in Glycosylation Critical Quality Attributes, Including Sialic Acid Content.

Author information

1
Reading School of Pharmacy, University of Reading , Reading, Berkshire RG6 6AP, United Kingdom.
2
Ludger, Ltd. , Culham Science Centre, Abingdon, Oxfordshire OX14 3EB, United Kingdom.
3
Integrated BioSciences, School of Clinical Dentistry, University of Sheffield , Sheffield, S10 2TA, United Kingdom.

Abstract

Erythropoietin (EPO) is one of the main therapeutics used to treat anemic patients, greatly improving their quality of life. In this study, biosimilars Binocrit and a development product, called here CIGB-EPO, were compared to the originator product, Eprex. All three are epoetin alpha products, reputed to have similar glycosylation profiles. The quality, safety, and efficacy of this biotherapeutic depend on the following glycosylation critical quality attributes (GCQAs): sialylation, N-glycolyl-neuraminic acid (Neu5Gc) content, branching, N-acetyl-lactosamine (LacNAc) extensions, and O-acetylation pattern. Reverse-phase ultra-high-pressure liquid chromatography (RP-UHPLC) analysis of acid-released, 1,2-diamino-4,5-methylenedioxybenzene (DMB) labeled sialic acid derivatives and hydrophilic interaction liquid chromatography (HILIC) in combination with mass spectrometry (HILIC-UHPLC-MS) of procainamide (PROC) labeled N-glycans were the analytical tools used. An automated method for enzymatic release and PROC labeling was applied for the first time to the erythropoiesis stimulating agent (ESA) products, which facilitated novel, in-depth characterization, and allowed identification of precise structural features including the location of O-acetyl groups on sialic acid (SA) moieties. Samples were digested by a sialate-O-acetylesterase (NanS) to confirm the presence of O-acetyl groups. It was found that Eprex contained the greatest relative abundance of O-acetylated derivatives, Binocrit expressed the least Neu5Gc, and CIGB-EPO showed the greatest variety of high-mannose-phosphate structures. The sialylation and LacNAc extension patterns of the three ESAs were similar, with a maximum of four N-acetyl-neuraminic acid (Neu5Ac) moieties detected per glycan. Such differences in SA derivatization, particularly O-acetylation, could have consequences for the quality and safety of a biotherapeutic, as well as its efficacy.

PMID:
28509534
DOI:
10.1021/acs.analchem.7b00353
Free full text

Supplemental Content

Full text links

Icon for American Chemical Society Icon for White Rose Research Online
Loading ...
Support Center