Format

Send to

Choose Destination
Arch Biochem Biophys. 1988 Dec;267(2):797-802.

Phosphoserine as a recognition determinant for glycogen synthase kinase-3: phosphorylation of a synthetic peptide based on the G-component of protein phosphatase-1.

Author information

1
Department of Biochemistry, Indiana University School of Medicine, Indianapolis 46223.

Abstract

Prior phosphorylation of its substrate has been shown to be important for substrate recognition by the protein kinase glycogen synthase kinase-3 (GSK-3). Phosphorylation of glycogen synthase by GSK-3 is known to be enhanced by the previous action of casein kinase II and the sequence -SXXXS(P)- was proposed as the minimal recognition determinant for GSK-3. The glycogen binding subunit of type 1 phosphoprotein phosphatase has been shown to be phosphorylated by cyclic AMP-dependent protein kinase at serine-13 in the sequence KPGFS(5)PQPS(9)RRGS(13)ESSEEVYV (F.B. Caudwell, A. Hiraga, and P. Cohen (1986) FEBS Lett. 194, 85-89). Inspection of the sequence revealed potential GSK-3 sites at residues 5 and 9. Using a synthetic peptide with the above sequence, we found that phosphorylation of serine-13 by cyclic AMP-dependent protein kinase permitted the recognition of serine-9 and serine-5 by GSK-3. The work provides another example of a substrate for GSK-3 and demonstrates that the action of GSK-3 is linked to the presence of phosphate in the substrate and not the action of any particular protein kinase. In the course of the analyses, a novel feature of trypsin cleavage of phosphopeptides was noted. In the sequence -SRRGS(P)- trypsin acted uniquely after the first arginine whereas in the sequence -S(P)RRGS(P)- it cleaved randomly at either arginine residue. The fact that GSK-3 could phosphorylate a peptide derived from a phosphatase subunit also raises the possibility that GSK-3 might be involved in controlling glycogen-associated type 1 phosphatase and, more generally, in mediating cyclic AMP control of protein phosphorylation in cells.

PMID:
2850771
DOI:
10.1016/0003-9861(88)90089-6
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center