Format

Send to

Choose Destination
Plant Cell Physiol. 2017 Aug 1;58(8):1350-1363. doi: 10.1093/pcp/pcx070.

The ARM Domain of ARMADILLO-REPEAT KINESIN 1 is Not Required for Microtubule Catastrophe But Can Negatively Regulate NIMA-RELATED KINASE 6 in Arabidopsis thaliana.

Author information

1
Department of Botany, University of British Columbia, Vancouver, BC, Canada V6T 1Z4.
2
Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.
3
Graduate School of Natural Science & Technology, Okayama University, Okayama 700-8530, Japan.

Abstract

Microtubules are dynamic filaments, the assembly and disassembly of which are under precise control of various associated proteins, including motor proteins and regulatory enzymes. In Arabidopsis thaliana, two such proteins are the ARMADILLO-REPEAT KINESIN 1 (ARK1), which promotes microtubule disassembly, and the NIMA-RELATED KINASE 6 (NEK6), which has a role in organizing microtubule arrays. Previous yeast two-hybrid and in vitro pull-down assays determined that NEK6 can interact with ARK1 through the latter protein's Armadillo-repeat (ARM) cargo domain. To explore the function of the ARM domain, we generated fluorescent reporter fusion proteins to ARK1 lacking the ARM domain (ARK1ΔARM-GFP) and to the ARM domain alone (ARM-GFP). Both of these constructs strongly associated with the growing plus ends of microtubules, but only ARK1ΔARM-GFP was capable of inducing microtubule catastrophe and rescuing the ark1-1 root hair phenotype. These results indicate that neither the ARM domain nor NEK6's putative interaction with it is required for ARK1 to induce microtubule catastrophe. In further exploration of the ARK1-NEK6 relationship, we demonstrated that, despite evidence that NEK6 can phosphorylate ARK1 in vitro, the in vivo distribution and function of ARK1 were not affected by the loss of NEK6, and vice versa. Moreover, NEK6 and ARK1 were found to have overlapping but non-identical distribution on microtubules, and hormone treatments known to affect NEK6 activity did not stimulate interaction. These findings suggest that ARK1 and NEK6 function independently in microtubule dynamics and cell morphogenesis. Despite the results of this functional analysis, we found that overexpression of the ARM domain led to complete loss of NEK6 transcription, suggesting that the ARM domain might have a regulatory role in NEK6 expression.

KEYWORDS:

Arabidopsis thaliana; Kinase; Kinesin; Microtubules; Morphogenesis; Root hairs

PMID:
28505371
DOI:
10.1093/pcp/pcx070
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center