Send to

Choose Destination
See comment in PubMed Commons below
Arzneimittelforschung. 1988 Jul;38(7):877-80.

Receptor binding, analgesic and antitussive potency of tramadol and other selected opioids.

Author information

Department of Biochemical Pharmacology, GrĂ¼nenthal GmbH, Aachen, Fed. Rep. of Germany.


The influence of replacing the phenolic hydroxyl by the methoxy group on opioid receptor binding, analgesic and antitussive action was investigated in the corresponding couples morphine-codeine, hydromorphone-hydrocodone and O-desmethyltramadol (L 235)-tramadol. Binding was studied on rat whole brain membranes (without cerebellum) with the radioligands dihydromorphine (mu-site), ethylketocyclazocine (k-site), D-Ala2-D-Leu5-enkephalin (delta-site) and naloxone (no selective binding). Analgesia (tail flick) and antitussive action (NH3-vapour induced cough) was investigated in rats and ED50 values 10 min after i.v. application were calculated to compare efficacy. All free hydroxyl compounds had higher opioid receptor affinities than the corresponding methoxy derivatives and were more active at the mu-site. The methoxy derivatives codeine and tramadol only had low affinities lacking selectivity towards mu-, kappa-, or delta-binding. Hydrocodone in contrast showed strong and mu-selective binding. The hydroxy compounds had higher analgesic activity than the methoxy congeners and analgesia appeared to correlate with mu-binding affinity. Codeine and hydrocodone were weaker antitussives than the corresponding hydroxy compounds, whereas no significant difference was found between O-desmethyltramadol and tramadol. Only in the tramadol group the methoxy substitution increased antitussive potency in relation to analgesic potency.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center