Format

Send to

Choose Destination
Clin Infect Dis. 2017 Jun 1;64(11):1494-1501. doi: 10.1093/cid/cix169.

Mycobacterium tuberculosis Whole Genome Sequences From Southern India Suggest Novel Resistance Mechanisms and the Need for Region-Specific Diagnostics.

Author information

1
Broad Institute of MIT and Harvard, Cambridge, Massachusetts.
2
Delft Bioinformatics Lab, Delft University of Technology, The Netherlands.
3
Department of Biomedical Engineering, and.
4
National Emerging Infectious Diseases Laboratory, Boston University, Massachusetts.
5
National Institute for Research in Tuberculosis, New Delhi, India.

Abstract

Background.:

India is home to 25% of all tuberculosis cases and the second highest number of multidrug resistant cases worldwide. However, little is known about the genetic diversity and resistance determinants of Indian Mycobacterium tuberculosis, particularly for the primary lineages found in India, lineages 1 and 3.

Methods.:

We whole genome sequenced 223 randomly selected M. tuberculosis strains from 196 patients within the Tiruvallur and Madurai districts of Tamil Nadu in Southern India. Using comparative genomics, we examined genetic diversity, transmission patterns, and evolution of resistance.

Results.:

Genomic analyses revealed (11) prevalence of strains from lineages 1 and 3, (11) recent transmission of strains among patients from the same treatment centers, (11) emergence of drug resistance within patients over time, (11) resistance gained in an order typical of strains from different lineages and geographies, (11) underperformance of known resistance-conferring mutations to explain phenotypic resistance in Indian strains relative to studies focused on other geographies, and (11) the possibility that resistance arose through mutations not previously implicated in resistance, or through infections with multiple strains that confound genotype-based prediction of resistance.

Conclusions.:

In addition to substantially expanding the genomic perspectives of lineages 1 and 3, sequencing and analysis of M. tuberculosis whole genomes from Southern India highlight challenges of infection control and rapid diagnosis of resistant tuberculosis using current technologies. Further studies are needed to fully explore the complement of diversity and resistance determinants within endemic M. tuberculosis populations.

KEYWORDS:

CAS lineage; EAI lineage; India; Indo-Oceanic lineage; drug resistance.

PMID:
28498943
PMCID:
PMC5434337
DOI:
10.1093/cid/cix169
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for PubMed Central
Loading ...
Support Center