Format

Send to

Choose Destination
Oncol Rep. 2017 Jun;37(6):3581-3589. doi: 10.3892/or.2017.5621. Epub 2017 May 3.

Demethylation of miR-495 inhibits cell proliferation, migration and promotes apoptosis by targeting STAT-3 in breast cancer.

Author information

1
Department of General (Breast and Thyroid), Daping Hospital of the Third Military Medical University, No. 10 Yangtze River Branch, Yuzhong, Chongqing 400042, P.R. China.

Abstract

In breast cancer (BC), silencing of miRNA genes due to miRNA gene promoter methylation are the important mechanisms directly contributing to tumorigenesis and tumor progression. miRNA-495 (miR-495) has been reported to be a tumor suppressor gene in various cancers, but its role and regulation in BC remains unclear. In the present study, the level of miR-495 was inversely correlated with the expression of STAT-3 in BC tissues and cell lines. miR-495 can directly target 3'-UTR of STAT-3 mRNA and thereby decrease the expression of STAT-3 in MCF-7 and HCC1973 cells by Targetscan and Dual-luciferase assay. We further analyzed miR-495 promoter methylation by sodium bisulfite sequencing method (BSP), and found DNA methyltransferase inhibitor, 5-AzaC concomitantly upregulated expression of miR-495 and downregulated its target gene STAT-3 and its downstream target VEGF. Furthermore, we further observed that 5-AzaC treatment, miR-495 mimics and STAT-3 knockdown significantly inhibited cell function in breast cancer by Transwell assay, EdU flow cytometry, Annexin V-FITC/PI combined with flow cytometry and Hoechst staining. Taken together, our data are first to demonstrate that the miR-495 is silenced due to promoter methylation in breast cancer. DNA methyltransferase inhibitor 5-AzaC could reverse miR‑495 (suppressor gene) and STAT-3 (oncogene). The anticancer properties of 5-AzaC were preliminarily confirmed in breast cancer.

PMID:
28498478
DOI:
10.3892/or.2017.5621
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Spandidos Publications
Loading ...
Support Center