Format

Send to

Choose Destination
Circ Res. 2017 May 12;120(10):1632-1648. doi: 10.1161/CIRCRESAHA.117.309417.

Methodological Guidelines to Study Extracellular Vesicles.

Author information

1
From the Biomedical Engineering and Physics (F.A.W.C., T.G.v.L., E.v.d.P.), Vesicle Observation Centre (F.A.W.C., A.G., T.G.v.L., E.v.d.P., G.S., R.N.), and Laboratory of Experimental Clinical Chemistry (A.G., G.S., R.N.), Academic Medical Center, University of Amsterdam, The Netherlands; Extracellular Vesicles and Membrane Repair, UMR-5248-CBMN CNRS, University of Bordeaux, IPB, Pessac, France (A.R.B.); Department of Genetics, Cell- and Immunobology, Semmelweis University, Budapest, Hungary (E.I.B.); VRCM, UMRS-1076, INSERM, Aix-Marseille University, UFR de Pharmacie, Marseille, France (F.D.-G., R.L.); Haematology and vascular biology department, CHU La Conception, APHM, Marseille, France (F.D.-G., R.L.); Exosomes Research Group, Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam, The Netherlands (E.E.E.D., D.M.P.); Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden (S.E.-A., Y.L.); Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (S.E.-A., I.M.); Bristol Heart Institute, University of Bristol, United Kingdom (C.E.); National Heart & Lung Institute, Imperial College London, United Kingdom (C.E.); 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland (A.G.); Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Belgium (A.H., O.d.W.); Cancer Research Institute Ghent, Belgium (A.H., O.d.W.); Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia (A.F.H.); Department of Medicine, University of North Carolina at Chapel Hill (N.M.); Institute of Technology, University of Tartu, Estonia (I.M.); Scintillon Institute, San Diego, CA (J.P.N.); Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY (S.S.); and EV Core Facility, University of Helsinki and EV-Group, Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, Finland (P.R.M.S.).
2
From the Biomedical Engineering and Physics (F.A.W.C., T.G.v.L., E.v.d.P.), Vesicle Observation Centre (F.A.W.C., A.G., T.G.v.L., E.v.d.P., G.S., R.N.), and Laboratory of Experimental Clinical Chemistry (A.G., G.S., R.N.), Academic Medical Center, University of Amsterdam, The Netherlands; Extracellular Vesicles and Membrane Repair, UMR-5248-CBMN CNRS, University of Bordeaux, IPB, Pessac, France (A.R.B.); Department of Genetics, Cell- and Immunobology, Semmelweis University, Budapest, Hungary (E.I.B.); VRCM, UMRS-1076, INSERM, Aix-Marseille University, UFR de Pharmacie, Marseille, France (F.D.-G., R.L.); Haematology and vascular biology department, CHU La Conception, APHM, Marseille, France (F.D.-G., R.L.); Exosomes Research Group, Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam, The Netherlands (E.E.E.D., D.M.P.); Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden (S.E.-A., Y.L.); Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (S.E.-A., I.M.); Bristol Heart Institute, University of Bristol, United Kingdom (C.E.); National Heart & Lung Institute, Imperial College London, United Kingdom (C.E.); 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland (A.G.); Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Belgium (A.H., O.d.W.); Cancer Research Institute Ghent, Belgium (A.H., O.d.W.); Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia (A.F.H.); Department of Medicine, University of North Carolina at Chapel Hill (N.M.); Institute of Technology, University of Tartu, Estonia (I.M.); Scintillon Institute, San Diego, CA (J.P.N.); Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY (S.S.); and EV Core Facility, University of Helsinki and EV-Group, Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, Finland (P.R.M.S.). r.nieuwland@amc.uva.nl.

Abstract

Owing to the relationship between extracellular vesicles (EVs) and physiological and pathological conditions, the interest in EVs is exponentially growing. EVs hold high hopes for novel diagnostic and translational discoveries. This review provides an expert-based update of recent advances in the methods to study EVs and summarizes currently accepted considerations and recommendations from sample collection to isolation, detection, and characterization of EVs. Common misconceptions and methodological pitfalls are highlighted. Although EVs are found in all body fluids, in this review, we will focus on EVs from human blood, not only our most complex but also the most interesting body fluid for cardiovascular research.

KEYWORDS:

cardiovascular diseases; exosomes; extracellular vesicles; methods; reference standards

PMID:
28495994
DOI:
10.1161/CIRCRESAHA.117.309417
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center