Send to

Choose Destination
Angew Chem Int Ed Engl. 2017 Jun 12;56(25):7141-7145. doi: 10.1002/anie.201702649. Epub 2017 May 16.

Formation of Double-Shelled Zinc-Cobalt Sulfide Dodecahedral Cages from Bimetallic Zeolitic Imidazolate Frameworks for Hybrid Supercapacitors.

Author information

School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.


Complex metal-organic frameworks used as precursors allow design and construction of various nanostructured functional materials which might not be accessible by other methods. Here, we develop a sequential chemical etching and sulfurization strategy to prepare well-defined double-shelled zinc-cobalt sulfide (Zn-Co-S) rhombic dodecahedral cages (RDCs). Yolk-shelled zinc/cobalt-based zeolitic imidazolate framework (Zn/Co-ZIF) RDCs are first synthesized by a controlled chemical etching process, followed by a hydrothermal sulfurization reaction to prepare double-shelled Zn-Co-S RDCs. Moreover, the strategy reported in this work enables easy control of the Zn/Co molar ratio in the obtained double-shelled Zn-Co-S RDCs. Owing to the structural and compositional benefits, the obtained double-shelled Zn-Co-S RDCs exhibit enhanced performance with high specific capacitance (1266 F g-1 at 1 A g-1 ), good rate capability and long-term cycling stability (91 % retention over 10,000 cycles) as a battery-type electrode material for hybrid supercapacitors.


double-shelled structures; hybrid supercapacitors; zeolitic imidazolate frameworks; zinc-cobalt sulfide


Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center