Format

Send to

Choose Destination
FEBS J. 2017 Jul;284(13):1970-1986. doi: 10.1111/febs.14100. Epub 2017 May 29.

Podocyte-specific soluble epoxide hydrolase deficiency in mice attenuates acute kidney injury.

Author information

1
Department of Nutrition, University of California Davis, CA, USA.
2
Department of Nutrition, University of Tennessee-Knoxville, TN, USA.
3
Department of Pathology, University of Alabama at Birmingham, AL, USA.
4
Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, CA, USA.
5
Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA.
6
Department of Entomology and Nematology, University of California Davis, CA, USA.
7
Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA.
8
Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, University of California Davis, Sacramento, CA, USA.

Erratum in

Abstract

Podocytes play an important role in maintaining glomerular function, and podocyte injury is a significant component in the pathogenesis of proteinuria. Soluble epoxide hydrolase (sEH) is a cytosolic enzyme whose genetic deficiency and pharmacological inhibition have beneficial effects on renal function, but its role in podocytes remains unexplored. The objective of this study was to investigate the contribution of sEH in podocytes to lipopolysaccharide (LPS)-induced kidney injury. We report increased sEH transcript and protein expression in murine podocytes upon LPS challenge. To determine the function of sEH in podocytes in vivo we generated podocyte-specific sEH-deficient (pod-sEHKO) mice. Following LPS challenge, podocyte sEH-deficient mice exhibited lower kidney injury, proteinuria, and blood urea nitrogen concentrations than controls suggestive of preserved renal function. Also, renal mRNA and serum concentrations of inflammatory cytokines IL-6, IL-1β, and TNFα were significantly lower in LPS-treated pod-sEHKO than control mice. Moreover, podocyte sEH deficiency was associated with decreased LPS-induced NF-κB and MAPK activation and attenuated endoplasmic reticulum stress. Furthermore, the protective effects of podocyte sEH deficiency in vivo were recapitulated in E11 murine podocytes treated with a selective sEH pharmacological inhibitor. Altogether, these findings identify sEH in podocytes as a contributor to signaling events in acute renal injury and suggest that sEH inhibition may be of therapeutic value in proteinuria.

ENZYMES:

Soluble epoxide hydrolase: EC 3.3.2.10.

KEYWORDS:

knockout mice; podocyte; proteinuria; soluble epoxide hydrolase

PMID:
28485854
PMCID:
PMC5515292
DOI:
10.1111/febs.14100
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center