Send to

Choose Destination
Cytometry A. 2017 Jun;91(6):595-608. doi: 10.1002/cyto.a.23124. Epub 2017 May 4.

An optimized image analysis algorithm for detecting nuclear signals in digital whole slides for histopathology.

Author information

3DHISTECH Ltd, Budapest, Hungary.
1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
Doctoral School of University of Pécs, Hungary.
Clinical Gastroenterology Research Unit, Hungarian Academy of Sciences, Budapest, Hungary.


Nuclear estrogen receptor (ER), progesterone receptor (PR) and Ki-67 protein positive tumor cell fractions are semiquantitatively assessed in breast cancer for prognostic and predictive purposes. These biomarkers are usually revealed using immunoperoxidase methods resulting in diverse signal intensity and frequent inhomogeneity in tumor cell nuclei, which are routinely scored and interpreted by a pathologist during conventional light-microscopic examination. In the last decade digital pathology-based whole slide scanning and image analysis algorithms have shown tremendous development to support pathologists in this diagnostic process, which can directly influence patient selection for targeted- and chemotherapy. We have developed an image analysis algorithm optimized for whole slide quantification of nuclear immunostaining signals of ER, PR, and Ki-67 proteins in breast cancers. In this study, we tested the consistency and reliability of this system both in a series of brightfield and DAPI stained fluorescent samples. Our method allows the separation of overlapping cells and signals, reliable detection of vesicular nuclei and background compensation, especially in FISH stained slides. Detection accuracy and the processing speeds were validated in routinely immunostained breast cancer samples of varying reaction intensities and image qualities. Our technique supported automated nuclear signal detection with excellent efficacy: Precision Rate/Positive Predictive Value was 90.23 ± 4.29%, while Recall Rate/Sensitivity was 88.23 ± 4.84%. These factors and average counting speed of our algorithm were compared with two other open source applications (QuPath and CellProfiler) and resulted in 6-7% higher Recall Rate, while 4- to 30-fold higher processing speed. In conclusion, our image analysis algorithm can reliably detect and count nuclear signals in digital whole slides or any selected large areas i.e. hot spots, thus can support pathologists in assessing clinically important nuclear biomarkers with less intra- and interlaboratory bias inherent of empirical scoring.


DAPI stain; ER; Ki-67; PR; cell nucleus detection algorithm; fluorescence; histopathology; immunohistochemistry; whole slide analysis

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center