Format

Send to

Choose Destination
Nucleic Acids Res. 2017 Jun 20;45(11):6911-6922. doi: 10.1093/nar/gkx353.

A synergistic network of interactions promotes the formation of in vitro processing bodies and protects mRNA against decapping.

Author information

1
Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany.

Abstract

Cellular liquid-liquid phase separation (LLPS) results in the formation of dynamic granules that play an important role in many biological processes. On a molecular level, the clustering of proteins into a confined space results from an indefinite network of intermolecular interactions. Here, we introduce and exploit a novel high-throughput bottom-up approach to study how the interactions between RNA, the Dcp1:Dcp2 mRNA decapping complex and the scaffolding proteins Edc3 and Pdc1 result in the formation of processing bodies. We find that the LLPS boundaries are close to physiological concentrations upon inclusion of multiple proteins and RNA. Within in vitro processing bodies the RNA is protected against endonucleolytic cleavage and the mRNA decapping activity is reduced, which argues for a role of processing bodies in temporary mRNA storage. Interestingly, the intrinsically disordered region (IDR) in the Edc3 protein emerges as a central hub for interactions with both RNA and mRNA decapping factors. In addition, the Edc3 IDR plays a role in the formation of irreversible protein aggregates that are potentially detrimental for cellular homeostasis. In summary, our data reveal insights into the mechanisms that lead to cellular LLPS and into the way this influences enzymatic activity.

PMID:
28472520
PMCID:
PMC5499654
DOI:
10.1093/nar/gkx353
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for PubMed Central
Loading ...
Support Center