Format

Send to

Choose Destination
J Mol Neurosci. 2017 Jun;62(2):188-198. doi: 10.1007/s12031-017-0922-0. Epub 2017 May 2.

Celecoxib Alleviates Memory Deficits by Downregulation of COX-2 Expression and Upregulation of the BDNF-TrkB Signaling Pathway in a Diabetic Rat Model.

Author information

1
Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136, Jingzhou Street, Xiangcheng District, Xiangyang City, Hubei, 441021, China.
2
Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136, Jingzhou Street, Xiangcheng District, Xiangyang City, Hubei, 441021, China. linggao048@sina.com.

Abstract

Previous studies conveyed that diabetes causes learning and memory deficits. Data also suggest that celecoxib exerts an anti-hyperalgesic, anti-allodynic, and a plethora of other beneficial effects in diabetic rats. However, whether celecoxib could alleviate memory deficit in diabetic rat is unknown. In the present study, we aimed to examine the potential of celecoxib to counter memory deficits in diabetes. Experimental diabetes was induced by streptozotocin (STZ, 60 mg/kg) in male SD rats. Rats were divided into three groups (n = 16/group): normal control group injected with normal saline, diabetes group injected with STZ, and diabetes + celecoxib group in which diabetic rats were administered with celecoxib by gavage in drinking water (10 mg/kg) for 10 days in terms of which memory performance in animals was measured, hippocampal tissue harvested, and long-term potentiation assessed. Western blotting and immunohistochemical staining were performed to determine cyclooxygenase 2 (COX-2) expression in hippocampus. The results showed that a rat model of STZ-induced diabetes was successfully established and that celecoxib treatment significantly improved the associated nephropathy and inflammation. Moreover, spatial memory and hippocampal long-term potentiation (LTP) were impaired in diabetic model (P < 0.05). Interestingly, our data revealed that oral application of celecoxib reversed the memory deficit and hippocampal LTP in the diabetic rats. To understand the underlying mechanisms, the expression of some important pathways involved in memory impairment was determined. We found that brain-derived neurotrophic factor (BDNF) and phosphorylated tropomyosin-related kinase (p-TrkB) were decreased in diabetic rats but were effectively reversed by celecoxib treatment. As evidenced by western blotting and immunohistochemical staining, the expression of COX-2 in hippocampus was significantly upregulated in diabetic rat (P < 0.05) but inhibited by celecoxib treatment. The present findings provide novel data that celecoxib reverses memory deficits via probable downregulation of hippocampal COX-2 expression and upregulation of the BDNF-TrkB signaling pathway in a diabetic rat.

KEYWORDS:

BDNF-TrkB signaling; COX-2; Celecoxib; Diabetes; Long-term potentiation; Memory deficit

PMID:
28466254
PMCID:
PMC5486519
DOI:
10.1007/s12031-017-0922-0
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Springer Icon for PubMed Central
Loading ...
Support Center