Send to

Choose Destination
Virology. 1988 Oct;166(2):550-60.

Primary structure and translation of a defective interfering RNA of murine coronavirus.

Author information

Department of Microbiology, University of Southern California, School of Medicine, Los Angeles 90033.


An intracellular defective-interfering (DI) RNA, DIssE, of mouse hepatitis virus (MHV) obtained after serial high multiplicity passage of the virus was cloned and sequenced. DIssE RNA is composed of three noncontiguous genomic regions, representing the first 864 nucleotides of the 5' end, an internal 748 nucleotides of the polymerase gene, and 601 nucleotides from the 3' end of the parental MHV genome. The DIssE sequence contains one large continuous open reading frame. Two protein products from this open reading frame were identified both by in vitro translation and in DI-infected cells. Sequence comparison of DIssE and the corresponding parts of the parental virus genome revealed that DIssE had three base substitutions within the leader sequence and also a deletion of nine nucleotides located at the junction of the leader and the remaining genomic sequence. The 5' end of DIssE RNA was heterogeneous with respect to the number of UCUAA repeats within the leader sequence. The parental MHV genomic RNA appears to have extensive and stable secondary structures at the regions where DI RNA rearrangements occurred. These data suggest that MHV DI RNA may have been generated as a result of the discontinuous and nonprocessive manner of MHV RNA synthesis.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center