Format

Send to

Choose Destination
Eur J Neurosci. 2017 Jul;46(2):1751-1757. doi: 10.1111/ejn.13597. Epub 2017 May 17.

Myosin II activity is required for structural plasticity at the axon initial segment.

Author information

1
Centre for Developmental Neurobiology, King's College London, London, SE1 1UL, UK.
2
FENS-Kavli Network of Excellence, Europe-wide.

Abstract

In neurons, axons possess a molecularly defined and highly organised proximal region - the axon initial segment (AIS) - that is a key regulator of both electrical excitability and cellular polarity. Despite existing as a large, dense structure with specialised cytoskeletal architecture, the AIS is surprisingly plastic, with sustained alterations in neuronal activity bringing about significant alterations to its position, length or molecular composition. However, although the upstream activity-dependent signalling pathways that lead to such plasticity have begun to be elucidated, the downstream mechanisms that produce structural changes at the AIS are completely unknown. Here, we use dissociated cultures of rat hippocampus to show that two forms of AIS plasticity in dentate granule cells - long-term relocation, and more rapid shortening - are completely blocked by treatment with blebbistatin, a potent and selective myosin II ATPase inhibitor. These data establish a link between myosin II and AIS function, and suggest that myosin II's primary role at the structure may be to effect activity-dependent morphological alterations.

KEYWORDS:

blebbistatin; cell culture; dentate granule cell; hippocampus

PMID:
28452088
PMCID:
PMC5573965
DOI:
10.1111/ejn.13597
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center