Format

Send to

Choose Destination
J Neurosurg. 2018 Mar;128(3):875-884. doi: 10.3171/2016.11.JNS16976. Epub 2017 Apr 21.

Noninvasive neuromodulation and thalamic mapping with low-intensity focused ultrasound.

Author information

1
Departments of 1 Neurosurgery.
2
Biomedical Engineering.
3
Impulse Monitoring, University of Virginia, Charlottesville, Virginia.
4
Comparative Medicine.
5
Pathology (Neuropathology), and.
6
Radiology, and.

Abstract

OBJECTIVE Ultrasound can be precisely focused through the intact human skull to target deep regions of the brain for stereotactic ablations. Acoustic energy at much lower intensities is capable of both exciting and inhibiting neural tissues without causing tissue heating or damage. The objective of this study was to demonstrate the effects of low-intensity focused ultrasound (LIFU) for neuromodulation and selective mapping in the thalamus of a large-brain animal. METHODS Ten Yorkshire swine ( Sus scrofa domesticus) were used in this study. In the first neuromodulation experiment, the lemniscal sensory thalamus was stereotactically targeted with LIFU, and somatosensory evoked potentials (SSEPs) were monitored. In a second mapping experiment, the ventromedial and ventroposterolateral sensory thalamic nuclei were alternately targeted with LIFU, while both trigeminal and tibial evoked SSEPs were recorded. Temperature at the acoustic focus was assessed using MR thermography. At the end of the experiments, all tissues were assessed histologically for damage. RESULTS LIFU targeted to the ventroposterolateral thalamic nucleus suppressed SSEP amplitude to 71.6% ± 11.4% (mean ± SD) compared with baseline recordings. Second, we found a similar degree of inhibition with a high spatial resolution (∼ 2 mm) since adjacent thalamic nuclei could be selectively inhibited. The ventromedial thalamic nucleus could be inhibited without affecting the ventrolateral nucleus. During MR thermography imaging, there was no observed tissue heating during LIFU sonications and no histological evidence of tissue damage. CONCLUSIONS These results suggest that LIFU can be safely used to modulate neuronal circuits in the central nervous system and that noninvasive brain mapping with focused ultrasound may be feasible in humans.

KEYWORDS:

FUS = focused ultrasound; H & E = hematoxylin and eosin; HIFU = high-intensity focused ultrasound; ISA = spatial average intensity; LFB = Luxol fast blue; LIFU = low-intensity focused ultrasound; PRFS = proton resonance frequency shift; SSEP = somatosensory evoked potential; VPL = ventroposterolateral thalamic nucleus; VPM = ventroposteromedial thalamic nucleus; brain mapping; functional neurosurgery; low intensity focused ultrasound; neuromodulation; noninvasive; somatosensory evoked potentials; thalamus

PMID:
28430035
DOI:
10.3171/2016.11.JNS16976

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center