Posterior Orbitofrontal and Anterior Cingulate Pathways to the Amygdala Target Inhibitory and Excitatory Systems with Opposite Functions

J Neurosci. 2017 May 17;37(20):5051-5064. doi: 10.1523/JNEUROSCI.3940-16.2017. Epub 2017 Apr 14.

Abstract

The bidirectional dialogue of the primate posterior orbitofrontal cortex (pOFC) with the amygdala is essential in cognitive-emotional functions. The pOFC also sends a uniquely one-way excitatory pathway to the amygdalar inhibitory intercalated masses (IM), which inhibit the medial part of the central amygdalar nucleus (CeM). Inhibition of IM has the opposite effect, allowing amygdalar activation of autonomic structures and emotional arousal. Using multiple labeling approaches to identify pathways and their postsynaptic sites in the amygdala in rhesus monkeys, we found that the anterior cingulate cortex innervated mostly the basolateral and CeM amygdalar nuclei, poised to activate CeM for autonomic arousal. By contrast, a pathway from pOFC to IM exceeded all other pathways to the amygdala by density and size and proportion of large and efficient terminals. Moreover, whereas pOFC terminals in IM innervated each of the three distinct classes of inhibitory neurons, most targeted neurons expressing dopamine- and cAMP-regulated phosphoprotein (DARPP-32+), known to be modulated by dopamine. The predominant pOFC innervation of DARPP-32+ neurons suggests activation of IM and inhibition of CeM, resulting in modulated autonomic function. By contrast, inhibition of DARPP-32 neurons in IM by high dopamine levels disinhibits CeM and triggers autonomic arousal. The findings provide a mechanism to help explain how a strong pOFC pathway, which is poised to moderate activity of CeM, through IM, can be undermined by the high level of dopamine during stress, resulting in collapse of potent inhibitory mechanisms in the amygdala and heightened autonomic drive, as seen in chronic anxiety disorders.SIGNIFICANCE STATEMENT The dialogue between prefrontal cortex and amygdala allows thoughts and emotions to influence actions. The posterior orbitofrontal cortex sends a powerful pathway that targets a special class of amygdalar intercalated mass (IM) inhibitory neurons, whose wiring may help modulate autonomic function. By contrast, the anterior cingulate cortex innervates other amygdalar parts, activating circuits to help avoid danger. Most IM neurons in primates label for the protein DARPP-32, known to be activated or inhibited based on the level of dopamine. Stress markedly increases dopamine release and inhibits IM neurons, compromises prefrontal control of the amygdala, and sets off a general alarm system as seen in affective disorders, such as chronic anxiety and post-traumatic stress disorder.

Keywords: DARPP-32; calbindin; emotions; intercalated masses; macaque brain; nitric oxide synthase.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Amygdala / cytology*
  • Amygdala / physiology
  • Animals
  • Arousal / physiology
  • Connectome / methods
  • Emotions / physiology
  • Excitatory Postsynaptic Potentials / physiology
  • Female
  • Gyrus Cinguli / physiology*
  • Macaca mulatta
  • Male
  • Nerve Net / cytology*
  • Nerve Net / physiology
  • Neural Inhibition*
  • Neural Pathways / cytology
  • Neural Pathways / physiology
  • Prefrontal Cortex / cytology*
  • Prefrontal Cortex / physiology