Send to

Choose Destination
Phys Chem Chem Phys. 2017 May 3;19(17):10889-10897. doi: 10.1039/c6cp08852j.

Effect of ion-ligand binding on ion pairing dynamics studied by two-dimensional infrared spectroscopy.

Author information

Department of Chemistry, Korea University, Seoul, 02841, Korea.


Cation-specific ion pairing dynamics between M+ (M = Ag or Cu) and SCN- in N,N-dimethylthioformamide (DMTF) are studied by probing the nitrile (CN) stretching vibration. The SCN- ion, which is an ambidentate ligand, readily associates with cations to form two different types of contact ion pairs (CIPs) (i.e., M-SCN or M-NCS) and its CN stretching frequency is significantly blue-shifted so that free SCN- and CIPs can be well-distinguished in the FTIR spectra. Interestingly, Ag+ ions prefer the formation of Ag-SCN in DMTF (Ag+ + SCN- ⇋ Ag-SCN) but Cu+ ions form Cu-NCS (Cu+ + SCN- ⇋ Cu-NCS). We have studied the effect of ion-ligand binding on the ion pairing equilibria and dynamics in great detail by using FTIR, IR pump-probe (IR PP), and two-dimensional infrared (2DIR) spectroscopy combined with quantum chemical calculations. First, our quantum chemical calculations corroborate that Ag-SCN and Cu-NCS of the two possible CIP configurations (M-SCN or M-NCS) are energetically stable and favored in DMTF. Second, the thermodynamic properties (ΔH and ΔS) of ion pairing equilibria are determined by temperature-dependent FTIR experiments. Finally, IR PP and 2DIR experiments are used to measure the association and dissociation rate constants. The ion pairing dynamics between Cu+ and SCN- are found to occur on much faster timescales than those between Ag+ and SCN-. Our current results provide important insights into understanding the effect of ion-ligand binding on the ion pairing equilibria and dynamics in polar solvents.


Supplemental Content

Full text links

Icon for Royal Society of Chemistry
Loading ...
Support Center