Send to

Choose Destination
J Biol Chem. 1988 Aug 5;263(22):10553-6.

Evidence for a mu-oxo-bridged binuclear iron cluster in the hydroxylase component of methane monooxygenase. Mössbauer and EPR studies.

Author information

Department of Biochemistry, Medical School, University of Minnesota, Minneapolis 55455.


Mössbauer and EPR studies of a highly active hydroxylase component of methane monooxygenase isolated from Methylosinus trichosporium OB3b are reported. The Mössbauer spectra of the oxidized (as isolated) hydroxylase show iron in a diamagnetic cluster containing an even number of Fe3+ sites. The parameters are consistent with an antiferromagnetically coupled binuclear cluster similar to those of hemerythrin and purple acid phosphatases. Upon partial reduction of the hydroxylase, an S = 1/2 EPR spectrum with g values at 1.94, 1.86, and 1.75 (gav = 1.85) is observed. Such spectra are characteristic of oxo-bridged iron dimers in the mixed valent Fe(II).Fe(III) state. Further reduction leads to the appearance of a novel EPR resonance at g = 15. Comparison with an inorganic model compound for mu-oxo-bridged binuclear iron suggests that the g = 15 signal is characteristic of the doubly reduced state of the cluster in the protein. In this state, the Mössbauer spectra exhibit two quadrupole doublets typical of high spin Fe2+, consistent with the Fe(II).Fe(II) form of the cluster. The spectral features of the iron center of the hydroxylase in three oxidation states are all similar to those reported for mu-oxo (or mu-hydroxo)-bridged binuclear iron clusters. Since no known monooxygenase contains such a cluster, a new oxygenase mechanism is suggested. Three different preparative methods yielded hydroxylases spanning a 9-fold range in specific activity, yet the same cluster concentration and spectral characteristics were observed. Thus, other parameters than those measured here have a major influence on the activity.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center