Format

Send to

Choose Destination
ACS Omega. 2017 Mar 31;2(3):1207-1214. doi: 10.1021/acsomega.6b00489. Epub 2017 Mar 29.

Aldehyde Detection in Electronic Cigarette Aerosols.

Author information

1
Department of Chemistry, Department of Chemical Engineering, and American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville , Louisville, Kentucky 40292, United States.

Abstract

Acetaldehyde, acrolein, and formaldehyde are the principal toxic aldehydes present in cigarette smoke and contribute to the risk of cardiovascular disease and noncancerous pulmonary disease. The rapid growth of the use of electronic cigarettes (e-cigarettes) has raised concerns over emissions of these harmful aldehydes. This work determines emissions of these aldehydes in both free and bound (aldehyde-hemiacetal) forms and other carbonyls from the use of e-cigarettes. A novel silicon microreactor with a coating phase of 4-(2-aminooxyethyl)-morpholin-4-ium chloride (AMAH) was used to trap carbonyl compounds in the aerosols of e-cigarettes via oximation reactions. AMAH-aldehyde adducts were measured using gas chromatography-mass spectrometry. 1H nuclear magnetic resonance spectroscopy was used to analyze hemiacetals in the aerosols. These aldehydes were detected in the aerosols of all e-cigarettes. Newer-generation e-cigarette devices generated more aldehydes than the first-generation e-cigarettes because of higher battery power output. Formaldehyde-hemiacetal was detected in the aerosols generated from some e-liquids using the newer e-cigarette devices at a battery power output of 11.7 W and above. The emission of these aldehydes from all e-cigarettes, especially higher levels of aldehydes from the newer-generation e-cigarette devices, indicates the risk of using e-cigarettes.

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center