Format

Send to

Choose Destination
Biochem Pharmacol. 2017 Sep 1;139:40-55. doi: 10.1016/j.bcp.2017.04.004. Epub 2017 Apr 6.

Natural product-based amyloid inhibitors.

Author information

1
Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA.
2
Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA.
3
Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; Center for Drug Discovery, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; School of Neuroscience, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA.
4
Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; Center for Drug Discovery, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; School of Neuroscience, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; Translational Obesity Research Center, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA. Electronic address: binxu@vt.edu.

Abstract

Many chronic human diseases, including multiple neurodegenerative diseases, are associated with deleterious protein aggregates, also called protein amyloids. One common therapeutic strategy is to develop protein aggregation inhibitors that can slow down, prevent, or remodel toxic amyloids. Natural products are a major class of amyloid inhibitors, and several dozens of natural product-based amyloid inhibitors have been identified and characterized in recent years. These plant- or microorganism-extracted compounds have shown significant therapeutic potential from in vitro studies as well as in vivo animal tests. Despite the technical challenges of intrinsic disordered or partially unfolded amyloid proteins that are less amenable to characterizations by structural biology, a significant amount of research has been performed, yielding biochemical and pharmacological insights into how inhibitors function. This review aims to summarize recent progress in natural product-based amyloid inhibitors and to analyze their mechanisms of inhibition in vitro. Major classes of natural product inhibitors and how they were identified are described. Our analyses comprehensively address the molecular interactions between the inhibitors and relevant amyloidogenic proteins. These interactions are delineated at molecular and atomic levels, which include covalent, non-covalent, and metal-mediated mechanisms. In vivo animal studies and clinical trials have been summarized as an extension. To enhance natural product bioavailability in vivo, emerging work using nanocarriers for delivery has also been described. Finally, issues and challenges as well as future development of such inhibitors are envisioned.

KEYWORDS:

Amyloid inhibitor; Covalent mechanisms; Inhibition mechanisms; Natural products; Non-covalent mechanisms

PMID:
28390938
PMCID:
PMC5841551
DOI:
10.1016/j.bcp.2017.04.004
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center