Format

Send to

Choose Destination
J Proteomics. 2017 May 24;161:47-56. doi: 10.1016/j.jprot.2017.03.021. Epub 2017 Mar 30.

A proteomic and ultrastructural characterization of Aspergillus fumigatus' conidia adaptation at different culture ages.

Author information

1
CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal; CNC.IBILI, University of Coimbra, 3004-504 Coimbra, Portugal.
2
i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Institute for Molecular and Cell Biology, University of Porto, 4200-135 Porto, Portugal.
3
CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CNC.IBILI, University of Coimbra, 3004-504 Coimbra, Portugal.
4
i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; Biology Department, Faculty of Sciences, University of Porto, 4150-171 Porto, Portugal. Electronic address: manuelao@ipatimup.pt.

Abstract

The airborne fungus Aspergillus fumigatus is one of the most common agents of human fungal infections with a remarkable impact on public health. However, A. fumigatus conidia atmospheric resistance and longevity mechanisms are still unknown. Therefore, in this work, the processes underlying conidial adaptation were studied by a time course evaluation of the proteomics and ultrastructural changes of A. fumigatus' conidia at three time-points selected according to relevant changes previously established in conidial survival rates. The proteomics characterization revealed that conidia change from a highly active metabolic to a dormant state, culminating in cell autolysis as revealed by the increased levels of hydrolytic enzymes. Structural characterization corroborates the proteomics data, with noticeable changes observed in mitochondria, nucleus and plasma membrane ultrastructure, accompanied by the formation of autophagic vacuoles. These changes are consistent with both apoptotic and autophagic processes, and indicate that the changes in protein levels may anticipate those in cell morphology.

SIGNIFICANCE:

The findings presented in this work not only clarify the processes underlying conidial adaptation to nutrient limiting conditions but can also be exploited for improving infection control strategies and in the development of new therapeutical drugs. Additionally, the present study was deposited in a public database and thus, it may also be a valuable dataset to be used by the scientific community as a tool to understand and identified other potential targets associated with conidia resistance.

KEYWORDS:

Adaptation to nutrient limitations; Aspergillus fumigatus' conidia; Fungal infections; Quantitative proteomics; SWATH-MS library; Ultrastructural alterations

PMID:
28365406
DOI:
10.1016/j.jprot.2017.03.021
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center