Send to

Choose Destination
Eur J Protistol. 2017 Jun;59:1-13. doi: 10.1016/j.ejop.2017.02.006. Epub 2017 Mar 7.

Structures related to attachment and motility in the marine eugregarine Cephaloidophora cf. communis (Apicomplexa).

Author information

Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic. Electronic address:
Department of Invertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory 1-12, Moscow 119234, Russian Federation.
Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.


Gregarines represent a highly diversified group of ancestral apicomplexans, with various modes of locomotion and host-parasite interactions. The eugregarine parasite of the barnacle Balanus balanus, Cephaloidophora cf. communis, exhibits interesting organisation of its attachment apparatus along with unique motility modes. The pellicle covered gregarine is arranged into longitudinal epicytic folds. The epimerite is separated from the protomerite by a septum consisting of tubulin-rich filamentous structures and both are packed with microneme-like structures suggestive of their function in the production of adhesives important for attachment and secreted through the abundant epimerite pores. Detached trophozoites and gamonts are capable of gliding motility, enriched by jumping and rotational movements with rapid changes in gliding direction and cell flexions. Actin in its polymerised form (F-actin) is distributed throughout the entire gregarine, while myosin, detected in the cortical region of the cell, follows the pattern of the epicytic folds. Various motility modes exhibited by individuals of C. cf. communis, together with significant changes in their cell shape during locomotion, are not concordant with the gliding mechanisms generally described in apicomplexan zoites and indicate that additional structures must be involved (e.g. two 12-nm filaments; the specific dentate appearance of internal lamina inside the epicytic folds).


Actin; Apicomplexa; Cell motility; Eugregarine; Myosin; α-Tubulin

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center