Format

Send to

Choose Destination
Appl Spectrosc. 2017 Aug;71(8):1760-1772. doi: 10.1177/0003702817694182. Epub 2017 Mar 30.

Diffuse Reflectance Spectroscopy of Hidden Objects, Part I: Interpretation of the Reflection-Absorption-Scattering Fractions in Near-Infrared (NIR) Spectra of Polyethylene Films.

Author information

1
1 Semenov Institute of Chemical Physics RAS, Moscow, Russia.
2
2 Branch of Institute of Natural and Technical Systems RAS, Sochi, Russia.
3
3 Peter the Great St Petersburg State Polytechnic University, St. Petersburg, Russia.

Abstract

Investigation of a sample covered by an interfering layer is required in many fields, e.g., for process control, biochemical analysis, and many other applications. This study is based on the analysis of spectra collected by near-infrared (NIR) diffuse reflectance spectroscopy. Each spectrum is a composition of a useful, target spectrum and a spectrum of an interfering layer. To recover the target spectrum, we suggest using a new phenomenological approach, which employs the multivariate curve resolution (MCR) method. In general terms, the problem is very complex. We start with a specific problem of analyzing a system, which consists of several layers of polyethylene (PE) film and underlayer samples with known spectral properties. To separate information originating from PE layers and the target, we modify the system versus both the number of the PE layers as well as the reflectance properties of the target sample. We consider that the interfering spectrum of the layer can be modeled using three components, which can be tentatively called transmission, absorption, and scattering contributions. The novelty of our approach is that we do not remove the reflectance and scattering effects from the spectra, but study them in detail aiming to use this information to recover the target spectrum.

KEYWORDS:

MCR; NIR; Near-infrared diffuse reflectance spectroscopy; multilayer systems; multivariate curve resolution; polyethylene films; reflectance; scattering; spectrum recovery

PMID:
28357880
DOI:
10.1177/0003702817694182

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center