Format

Send to

Choose Destination
J Appl Phycol. 2017;29(1):585-593. doi: 10.1007/s10811-016-0957-6. Epub 2016 Sep 23.

pH-driven solubilization and isoelectric precipitation of proteins from the brown seaweed Saccharina latissima-effects of osmotic shock, water volume and temperature.

Author information

1
Food and Nutrition Science, Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden.

Abstract

In the light of the global search for novel and sustainable protein sources, macroalgal proteins are becoming an attractive target. To date, mainly red and green macroalgae have been investigated in this respect, whereas the brown species are less studied, possibly because of the lower content of protein. In a biorefinery context, however, the protein content of brown macroalgae can still be economically interesting due to fast growth and the possibility to co-extract other compounds, such as alginates. The aim of this study was to develop a simple, scalable pH shift-based protein isolation technique applicable on wet Saccharina latissima biomass. Factors investigated were extraction volume, temperature, protein solubilization pH, osmoshock pretreatment and protein precipitation pH. Maximum protein solubility was obtained at pH 12, where 34 % of the total protein content could be extracted with 5.56 volumes of extraction solution (20 volumes on dry weight (dw) basis). Osmoshocking significantly increased the yield, and 20, 40 and 60 volumes of water (dw basis) gave 45.1, 46.8 and 59.5 % yield, respectively. The temperature during osmoshocking did not significantly affect the extraction yield, and extended time (16 vs. 1 or 2 h) reduced protein yield. Precipitation of solubilized proteins was possible below pH 4; the highest precipitation yield, 34.5 %, was obtained at pH 2. After combined alkaline extraction and acid precipitation, 16.01 % of the Saccharina proteins were recovered, which can be considered acceptable in comparison to other studies on algae but leaves some room for improvement when compared to protein extraction from, for instance, soy.

KEYWORDS:

Phaeophyceae; Precipitation; Protein; Saccharina latissima; Seaweed; Solubility; pH

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center