Format

Send to

Choose Destination
Neuropeptides. 2017 Jun;63:37-42. doi: 10.1016/j.npep.2017.03.002. Epub 2017 Mar 18.

The effects of endothelin-1 on satellite glial cells in peripheral ganglia.

Author information

1
Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem 91240, Israel.
2
Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem 91240, Israel. Electronic address: hananim@cc.huji.ac.il.

Abstract

Endothelins (ET) are a family of highly active neuropeptides with manifold influences via ET receptors (ETR) in both the peripheral and central nervous systems. We have shown previously that satellite glial cells (SGCs) in mouse trigeminal ganglia (TG) are extremely sensitive to ET-1 in evoking [Ca2+]in increase, apparently via ETBR activation, but there is no functional information on ETR in SGCs of other peripheral ganglia. Here we tested the effects of ET-1 on SGCs in nodose ganglia (NG), which is sensory, and superior cervical ganglia (Sup-CG), which is part of the sympathetic nervous system, and further investigated the influence of ET-1 on SGCs in TG. Using calcium imaging we found that SGCs in intact, freshly isolated NG and Sup-CG are highly sensitive to ET-1, with threshold concentration at 0.1nM. Our results showed that [Ca2+]in elevation in response to ET-1 was partially due to Ca2+ influx from the extracellular space and partially to Ca2+ release from intracellular stores. Using receptor selective ETR agonists and antagonists, we found that the responses were mediated by mixed ETAR/ETBR in SGCs of NG and predominantly by ETBR in SGCs of Sup-CG. By employing intracellular dye injection we examined coupling among SGCs around different neurons in the presence of 5nM ET-1 and observed coupling inhibition in all the three ganglion types. In summary, our work showed that SGCs in mouse sensory and sympathetic ganglia are highly sensitive to ET-1 and that this peptide markedly reduces SGCs coupling. We conclude that ET-1, which may participate in neuron-glia communications, has similar functions in wide range of peripheral ganglia.

KEYWORDS:

Calcium imaging; Endothelin; Gap junctions; Nodose ganglion; Satellite glial cells; Superior cervical ganglion; Sympathetic ganglia; Trigeminal ganglion

PMID:
28342550
DOI:
10.1016/j.npep.2017.03.002
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center