Format

Send to

Choose Destination
Neuroimage. 2018 Mar;168:33-58. doi: 10.1016/j.neuroimage.2017.03.035. Epub 2017 Mar 20.

SAR Simulations & Safety.

Author information

1
Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. Electronic address: t.fiedler@dkfz.de.
2
Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany.
3
Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Electromagnetic Theory and Applied Mathematics, Faculty of Electrical Engineering and Information Technology, FH Aachen - University of Applied Sciences, 52066 Aachen, Germany.

Abstract

At ultra-high fields, the assessment of radiofrequency (RF) safety presents several new challenges compared to low-field systems. Multi-channel RF transmit coils in combination with parallel transmit techniques produce time-dependent and spatially varying power loss densities in the tissue. Further, in ultra-high-field systems, localized field effects can be more pronounced due to a transition from the quasi stationary to the electromagnetic field regime. Consequently, local information on the RF field is required for reliable RF safety assessment as well as for monitoring of RF exposure during MR examinations. Numerical RF and thermal simulations for realistic exposure scenarios with anatomical body models are currently the only practical way to obtain the requisite local information on magnetic and electric field distributions as well as tissue temperature. In this article, safety regulations and the fundamental characteristics of RF field distributions in ultra-high-field systems are reviewed. Numerical methods for computation of RF fields as well as typical requirements for the analysis of realistic multi-channel RF exposure scenarios including anatomical body models are highlighted. In recent years, computation of the local tissue temperature has become of increasing interest, since a more accurate safety assessment is expected because temperature is directly related to tissue damage. Regarding thermal simulation, bio-heat transfer models and approaches for taking into account the physiological response of the human body to RF exposure are discussed. In addition, suitable methods are presented to validate calculated RF and thermal results with measurements. Finally, the concept of generalized simulation-based specific absorption rate (SAR) matrix models is discussed. These models can be incorporated into local SAR monitoring in multi-channel MR systems and allow the design of RF pulses under constraints for local SAR.

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center