Send to

Choose Destination
Traffic Inj Prev. 2017 May 29;18(sup1):S122-S128. doi: 10.1080/15389588.2017.1309526. Epub 2017 Mar 23.

Age-related changes in thoracic skeletal geometry of elderly females.

Author information

a Department of Biomechanical Engineering , University of Michigan , Ann Arbor , Michigan.
b International Center for Automotive Medicine , University of Michigan , Ann Arbor , Michigan.



Both females and the elderly have been identified as vulnerable populations with increased injury and mortality risk in multiple crash scenarios. Particularly in frontal impacts, older females show higher risk to the chest and thorax than their younger or male counterparts. Thoracic geometry plays a role in this increase, and this study aims to quantify key parts of that geometry in a way that can directly inform human body models that incorporate the concept of person age.


Computed tomography scans from 2 female subject groups aged 20-35 and 65-99 were selected from the International Center for Automotive Medicine scan database representing young and old female populations. A model of thoracic skeletal anatomy was built for each subject from independent parametric models of the spine, ribs, and sternum, along with further parametric models of those components' spatial relationships. Parameter values between the 2 groups are directly compared, and average parameter values within each group are used to generate statistically average skeletal geometry for young and old females. In addition to the anatomic measures explicitly used in the parameterization scheme, key measures of rib cage depth and spine curvature are taken from both the underlying subject pool and from the resultant representative geometries.


Statistically significant differences were seen between the young and old groups' spine and rib anatomic components, with no significant differences in local sternal geometry found. Vertebral segments in older females had higher angles relative to their inferior neighbors, providing a quantification of the kyphotic curvature known to be associated with age. Ribs in older females had greater end-to-end span, greater aspect ratio, and reduced out-of-plane deviation, producing an elongated and overall flatter curvature that leads to distal rib ends extending further anteriorly in older individuals. Combined differences in spine curvature and rib geometry led to an 18-mm difference in anterior placement of the sternum between young and old subjects.


This study provides new geometric data regarding the variability in anthropometry of adult females with age and has utility in advancing the veracity of current human body models. A simplified scaffold representation of underlying 3-dimensional bones within the thorax is presented, and the reported young and old female parameter sets can be used to characterize the anatomic differences expected with age and to both validate and drive morphing algorithms for aged human body models. The modular approach taken allows model parameters to hold inherent and intuitive meaning, offering advantages over more generalized methods such as principal component analysis. Geometry can be assessed on a component level or a whole thorax level, and the parametric representation of thorax shape allows direct comparisons between the current study and other individuals or human body models.


Rib; gender; geometry; model; shape; spine; spiral; thorax

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center