Format

Send to

Choose Destination
Mol Biol Evol. 1986 Jan;3(1):75-83.

Molecular evolution of bacteriophages: evidence of selection against the recognition sites of host restriction enzymes.

Author information

1
Department of Genetics, Trinity College, Dublin, Ireland.

Abstract

Restriction enzymes produced by bacteria serve as a defense against invading bacteriophages, and so phages without other protection would be expected to undergo selection to eliminate recognition sites for these enzymes from their genomes. The observed frequencies of all restriction sites in the genomes of all completely sequenced DNA phages (T7, lambda, phi X174, G4, M13, f1, fd, and IKe) have been compared to expected frequencies derived from trinucleotide frequencies. Attention was focused on 6-base palindromes since they comprise the typical recognition sites for type II restriction enzymes. All of these coliphages, with the exception of lambda and G4, exhibit significant avoidance of the particular sequences that are enterobacterial restriction sites. As expected, the sequenced fraction of the genome of phi 29, a Bacillus subtilis phage, lacks Bacillus restriction sites. By contrast, the RNA phage MS2, several viruses that infect eukaryotes (EBV, adenovirus, papilloma, and SV40), and three mitochondrial genomes (human, mouse, and cow) were found not to lack restriction sites. Because the particular palindromes avoided correspond closely with the recognition sites for host enzymes and because other viruses and small genomes do not show this avoidance, it is concluded that the effect indeed results from natural selection.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center