Format

Send to

Choose Destination
J Steroid Biochem. 1988 Feb;29(2):185-9.

The biological assessment of vitamin D3 metabolites produced by rumen bacteria.

Author information

1
National Animal Disease Center, U.S. Department of Agriculture, Ames, IA 50010.

Abstract

Biological assays were performed to evaluate 10-oxo-19-nor-vitamin D3 (10-oxo-D3) and 5(E) 25-hydroxy-10-oxo-19-nor-vitamin D3 (25-OH-10-oxo-D3) two bacterial products of vitamin D3 (D3) and 25-hydroxyvitamin D3 (25-OHD3) metabolism, respectively. The 5(Z) and 5(E) isomers of 10-oxo-D3 were, respectively, 40- and 80-fold less active than D3 in stimulating Ca+2 absorption from the gut. 25-Hydroxy-10-oxo-D3 did not stimulate Ca+2 absorption. Only 5(Z) 10-oxo-D3 induced mobilization of bone Ca+2. In addition, both 10-oxo-D3 and 25-OH-10-oxo-D3 showed poor affinities for either the plasma D3-binding protein or the thymus 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] receptor. 10-Keto-D3 exhibited a plasma half-life of only 6 min. This was a much shorter half-life than that exhibited by other vitamin D metabolites and was expected because of the poor affinity 10-oxo-D3 has for the plasma vitamin D binding protein. Bacterial metabolism of D3 deactivates the vitamin, which allows ruminants to tolerate relatively large oral doses of D3.

PMID:
2831435
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center