Send to

Choose Destination
J Mol Biol. 1987 Nov 5;198(1):33-41.

Conserved elements in the 3' untranslated region of flavivirus RNAs and potential cyclization sequences.

Author information

Division of Biology, California Institute of Technology, Pasadena 91125.


We have isolated a cDNA clone after reverse transcription of the genomic RNA of Asibi yellow fever virus whose structure suggests it was formed by self-priming from a 3'-terminal hairpin of 87 nucleotides in the genomic RNA. We have also isolated a clone from cDNA made to Murray Valley encephalitis virus RNA that also appears to have arisen by self-priming from a 3'-terminal structure very similar or identical to that of yellow fever. In addition, 3'-terminal sequencing of the S1 strain of dengue 2 RNA shows that this RNA is also capable of forming a 3'-terminal hairpin of 79 nucleotides. Furthermore, we have identified two 20-nucleotide sequence elements which are present in the 3' untranslated region of all three viruses; one of these sequence elements is repeated in Murray Valley encephalitis and dengue 2 RNA but not in yellow fever RNA. In all three viruses, which represent the three major serological subgroups of the mosquito-borne flaviviruses, the 3'-proximal conserved sequence element, which is found immediately adjacent to the potential 3'-terminal hairpin, is complementary to another conserved domain near the 5' end of the viral RNAs, suggesting that flavivirus RNAs can cyclize (calculated delta G less than -11 kcal; 1 kcal = 4.184 kJ).

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center