Format

Send to

Choose Destination
J Steroid Biochem. 1987;27(4-6):801-5.

Regulation of the biosynthesis of steroidogenic enzymes.

Author information

1
Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Health Science Center, Dallas 75235-9051.

Abstract

Recombinant DNA technology can permit study of the regulation of steroid hydroxylase gene expression at three levels. The first of these is cAMP-regulated gene expression. In the adrenal, ACTH, via cAMP, increases the expression of the genes for all of the cytochrome P-450 species involved in the steroid biosynthetic pathway, as well as the iron-sulfur protein, adrenodoxin. This action of cAMP is inhibited by cycloheximide, suggestive of the involvement of a regulatory protein factor in mediating this action of cAMP. The second level is tissue-specific regulation of steroid hydroxylase gene expression. An example of this which we have studied is the expression of cholesterol side-chain cleavage cytochrome P-450 (P-450sec) and 17 alpha-hydroxylase cytochrome P-450 (P-450(17) alpha) in the bovine ovary. P-450sec is expressed at high levels in the corpus luteum but at low levels in follicles, whereas P-450(17)alpha is expressed in follicles, but is undetectable in the corpus luteum. The third level is fetal imprinting. A number of the cytochrome P-450 species involving in the steroidogenic pathway are expressed in the fetal adrenal at a time when exposure of the gland to ACTH is very low, suggestive that factor(s) other than pituitary ACTH mediate this expression in fetal life.

PMID:
2826909
DOI:
10.1016/0022-4731(87)90152-x
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center