Send to

Choose Destination
Cell. 1987 Dec 24;51(6):953-61.

Yeast HAP2 and HAP3 activators both bind to the CYC1 upstream activation site, UAS2, in an interdependent manner.

Author information

Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.


Transcriptional activation by the yeast CYC1 upstream activation site UAS2UP1 requires the products of both the HAP2 and HAP3 regulatory genes. We show here that both HAP2 and HAP3 in yeast extracts bind to UAS2UP1 and give rise to a single protein-DNA complex, termed C, in nondenaturing polyacrylamide gels. That both products are a part of complex C was shown by altering the mobility of the complex by fusing either HAP2 or HAP3 to beta-galactosidase. Further, methylation interference footprinting showed that sequences in UAS2UP1 contacted in complex C were identical to those contacted in either fusion protein complex. Binding was centered on the sequence TGATTGGT, also found in the UASs of other genes subject to activation by the HAP2-HAP3 system and homologous to the CCAAT box sequence found in higher cells. The binding of either HAP2 or HAP3 was abolished when synthesized in a strain mutant in the complementary HAP gene. Thus the binding of HAP2 and HAP3 to UAS2UP1 is interdependent. The involvement of multiple gene products in binding to a single site is discussed with reference to other systems in yeast and higher cells.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center