Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochim Biophys Acta. 1987 Dec 17;894(3):460-7.

Control of state 3 respiration in liver mitochondria from rats subjected to chronic ethanol consumption.

Author information

1
Department of Biochemistry, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, NC 27103.

Abstract

Male Sprague-Dawley rats were pair-fed a liquid diet containing 36% of calories as ethanol for at least 31 days. Mitochondria were isolated from the livers and assayed for state 3, state 4 and uncoupled respiration at all three coupling sites. Assay conditions were established that maximized state 3 respiration with each substrate while maintaining a high respiratory control ratio. In mitochondria from ethanol-fed animals, state 3 respiratory rates were decreased at all three coupling sites. The decreased state 3 rate observed at site III was still significantly higher than the state 3 rates observed at site II in mitochondria from either ethanol-fed or control animals. Moreover, the maximal (FCCP-uncoupled) rates with succinate and alpha-ketoglutarate were the same in mitochondria from ethanol-fed and control animals, whereas with glutamate-malate as substrate it was lowered 23% by chronic ethanol consumption. To investigate the role of cytochrome oxidase in modulating the respiratory rate with site I and site II substrates, the effects of cyanide on state 3 and FCCP-uncoupled respiration were determined. When the mitochondria were uncoupled there was no decrease in the rate of succinate oxidation until the rates of ascorbate and succinate oxidation became equivalent. Conversely, parallel inhibition of ascorbate, succinate and glutamate-malate state 3 respiratory rates were observed at all concentrations (1-50 microM) of cyanide utilized. These observations suggest strongly that in coupled mitochondria ethanol-elicited decreases in cytochrome oxidase activity depress the state 3 respiratory rates with site I and II substrates.

PMID:
2825777
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center