Format

Send to

Choose Destination
Biophys J. 2017 Mar 28;112(6):1059-1062. doi: 10.1016/j.bpj.2017.02.002. Epub 2017 Feb 22.

Geometric Requirements for Tectorial Membrane Traveling Waves in the Presence of Cochlear Loads.

Author information

1
Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts; Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts. Electronic address: sellon@mit.edu.
2
Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts.
3
Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts; Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts.

Abstract

Recent studies suggest that wave motions of the tectorial membrane (TM) play a critical role in determining the frequency selectivity of hearing. However, frequency tuning is also thought to be limited by viscous loss in subtectorial fluid. Here, we analyze effects of this loss and other cochlear loads on TM traveling waves. Using a viscoelastic model, we demonstrate that hair bundle stiffness has little effect on TM traveling waves calculated with physiological parameters, that the limbal attachment can cause small (<20%) increases in TM wavelength, and that viscous loss in the subtectorial fluid can cause small (<20%) decreases in TM wave decay constants. However, effects of viscous loss in the subtectorial fluid are significantly increased if TM thickness is decreased. In contrast, increasing TM thickness above its physiological range has little effect on the wave, suggesting that the TM is just thick enough to maximize the spatial extent of the TM traveling wave.

PMID:
28237025
PMCID:
PMC5375137
DOI:
10.1016/j.bpj.2017.02.002
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center