Water-Insoluble Photosensitizer Nanocolloids Stabilized by Supramolecular Interfacial Assembly towards Photodynamic Therapy

Sci Rep. 2017 Feb 23:7:42978. doi: 10.1038/srep42978.

Abstract

Nanoengineering of hydrophobic photosensitizers (PSs) is a promising approach for improved tumor delivery and enhanced photodynamic therapy (PDT) efficiency. A variety of delivery carriers have been developed for tumor delivery of PSs through the enhanced permeation and retention (EPR) effect. However, a high-performance PS delivery system with minimum use of carrier materials with excellent biocompatibility is highly appreciated. In this work, we utilized the spatiotemporal interfacial adhesion and assembly of supramolecular coordination to achieve the nanoengineering of water-insoluble photosensitizer Chlorin e6 (Ce6). The hydrophobic Ce6 nanoparticles are well stabilized in a aqueous medium by the interfacially-assembled film due to the coordination polymerization of tannic acid (TA) and ferric iron (Fe(III)). The resulting Ce6@TA-Fe(III) complex nanoparticles (referenced as Ce6@TA-Fe(III) NPs) significantly improves the drug loading content (~65%) and have an average size of 60 nm. The Ce6@TA-Fe(III) NPs are almost non-emissive as the aggregated states, but they can light up after intracellular internalization, which thus realizes low dark toxicity and excellent phototoxicity under laser irradiation. The Ce6@TA-Fe(III) NPs prolong blood circulation, promote tumor-selective accumulation of PSs, and enhanced antitumor efficacy in comparison to the free-carrier Ce6 in vivo evaluation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Survival / drug effects
  • Cell Survival / radiation effects
  • Chlorophyllides
  • Drug Carriers / chemistry*
  • Female
  • Ferric Compounds / chemistry
  • Humans
  • Lasers
  • MCF-7 Cells
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • Microscopy, Confocal
  • Nanoparticles / chemistry*
  • Nanoparticles / toxicity
  • Neoplasms / diagnostic imaging
  • Neoplasms / drug therapy
  • Particle Size
  • Photochemotherapy
  • Photosensitizing Agents / chemistry*
  • Photosensitizing Agents / pharmacology
  • Photosensitizing Agents / therapeutic use
  • Porphyrins / chemistry
  • Porphyrins / pharmacology
  • Porphyrins / therapeutic use
  • Tannins / chemistry
  • Water / chemistry

Substances

  • Chlorophyllides
  • Drug Carriers
  • Ferric Compounds
  • Photosensitizing Agents
  • Porphyrins
  • Tannins
  • Water
  • phytochlorin