Send to

Choose Destination
J Biochem. 1987 Jul;102(1):199-209.

A mechanism of respiratory control: studies with proteoliposomes containing cytochrome oxidase and bacteriorhodopsin.

Author information

Department of Public Health, Faculty of Medicine, Kyoto University.


Both beef heart cytochrome oxidase and bacteriorhodopsin of Halobacterium halobium were reconstituted into liposomes by the sonication-cholate dialysis method. The proteoliposomes showed the respiratory control ratio of 4.2, and steady-state illumination of the vesicles lead to the 2.7-fold stimulation of the oxidase activity in the absence of uncouplers. The light-stimulated state 4 respiration increased with light intensity, but light had no effect on the oxidase activity that had been relieved by addition of uncouplers. Proteoliposomes with the photosensitive oxidase activity were also obtained when cytochrome oxidase vesicles were fused with bacteriorhodopsin vesicles in the presence of calcium chloride, and the extent of photoactivation was maximally 1.4-fold. The light-induced respiratory release was observed even in the presence of valinomycin or nigericin, indicating that the oxidase activity was sensitive to both the membrane potential and the pH gradient. We propose as a mechanism of the respiratory control that the process of proton transport to the reaction center for water formation is the rate limiting step for the cytochrome oxidase activity.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for J-STAGE, Japan Science and Technology Information Aggregator, Electronic
Loading ...
Support Center