Format

Send to

Choose Destination
J Am Chem Soc. 2017 Apr 26;139(16):5768-5778. doi: 10.1021/jacs.6b11166. Epub 2017 Mar 3.

Metal-Controlled Magnetoresistance at Room Temperature in Single-Molecule Devices.

Author information

1
Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Martí i Franquès 1 and Institut de Bioenginyeria de Catalunya (IBEC) , Baldiri Reixac 15-21, Barcelona 08028, Spain.
2
Centro Investigación Biomédica en Red (CIBER-BBN) , Campus Río Ebro-Edificio I+D, Poeta Mariano Esquillor s/n, 50018 Zaragoza, Spain.
3
Institut de Química Teòrica i Computacional, Universitat de Barcelona , Diagonal 645, 08028 Barcelona, Spain.
4
Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH) , Casilla 40, Correo 33, Santiago, Chile.
5
Centro Para El Desarrollo de Nanociencias y Nanotecnología, CEDENNA , Santiago, Chile.
6
Institut de Ciència Molecular (ICMol), Universitat de València , 46980 Paterna, València, Spain.
7
Departament de Química Inorgànica i Orgànica, Universitat de Barcelona , Diagonal 645, 08028 Barcelona, Spain.

Abstract

The appropriate choice of the transition metal complex and metal surface electronic structure opens the possibility to control the spin of the charge carriers through the resulting hybrid molecule/metal spinterface in a single-molecule electrical contact at room temperature. The single-molecule conductance of a Au/molecule/Ni junction can be switched by flipping the magnetization direction of the ferromagnetic electrode. The requirements of the molecule include not just the presence of unpaired electrons: the electronic configuration of the metal center has to provide occupied or empty orbitals that strongly interact with the junction metal electrodes and that are close in energy to their Fermi levels for one of the electronic spins only. The key ingredient for the metal surface is to provide an efficient spin texture induced by the spin-orbit coupling in the topological surface states that results in an efficient spin-dependent interaction with the orbitals of the molecule. The strong magnetoresistance effect found in this kind of single-molecule wire opens a new approach for the design of room-temperature nanoscale devices based on spin-polarized currents controlled at molecular level.

PMID:
28215074
DOI:
10.1021/jacs.6b11166

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center