Format

Send to

Choose Destination
Int J Pharm. 2017 Jun 20;525(2):343-358. doi: 10.1016/j.ijpharm.2017.02.032. Epub 2017 Feb 14.

Engineering approaches in siRNA delivery.

Author information

1
Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano (SA), Italy.
2
Dipartimento di Ingegneria Industriale, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano (SA), Italy.
3
Dipartimento di Ingegneria Industriale, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano (SA), Italy. Electronic address: glamberti@unisa.it.
4
Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/A, I-34127 Trieste, Italy.
5
Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy.
6
Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Italy; CEINGE Biotecnologie avanzate, Napoli, Italy.
7
Università degli Studi di Palermo, DICAM - Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali and ATeN Center - CHAB, Italy.
8
Università degli Studi di Palermo, STEBICEF - Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche and ATeN Center - CHAB, Italy.
9
PSE-Lab, Process Systems Engineering Laboratory - Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta" Politecnico di Milano - Piazza Leonardo da Vinci 32, 20133 Milano, Italy.

Abstract

siRNAs are very potent drug molecules, able to silence genes involved in pathologies development. siRNAs have virtually an unlimited therapeutic potential, particularly for the treatment of inflammatory diseases. However, their use in clinical practice is limited because of their unfavorable properties to interact and not to degrade in physiological environments. In particular they are large macromolecules, negatively charged, which undergo rapid degradation by plasmatic enzymes, are subject to fast renal clearance/hepatic sequestration, and can hardly cross cellular membranes. These aspects seriously impair siRNAs as therapeutics. As in all the other fields of science, siRNAs management can be advantaged by physical-mathematical descriptions (modeling) in order to clarify the involved phenomena from the preparative step of dosage systems to the description of drug-body interactions, which allows improving the design of delivery systems/processes/therapies. This review analyzes a few mathematical modeling approaches currently adopted to describe the siRNAs delivery, the main procedures in siRNAs vectors' production processes and siRNAs vectors' release from hydrogels, and the modeling of pharmacokinetics of siRNAs vectors. Furthermore, the use of physical models to study the siRNAs vectors' fate in blood stream and in the tissues is presented. The general view depicts a framework maybe not yet usable in therapeutics, but with promising possibilities for forthcoming applications.

KEYWORDS:

Delivery vectors; Mathematical modeling; Physical modeling; in vitro models; siRNAs

PMID:
28213276
DOI:
10.1016/j.ijpharm.2017.02.032
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center