Send to

Choose Destination
Exp Hematol. 1987 Oct;15(9):928-35.

Tumor necrosis factor-alpha and hematopoietic progenitors: effects of tumor necrosis factor on the growth of erythroid progenitors CFU-E and BFU-E and the hematopoietic cell lines K562, HL60, and HEL cells.

Author information

Audie Murphy VA Hospital, Research Service, San Antonio, TX 78284.


Macrophages can modulate the growth of hematopoietic progenitors. We have examined the effects of tumor necrosis factor-alpha, a product of activated macrophages, on human erythroid progenitors (CFU-E, BFU-E) and the hematopoietic cell lines K562, HL60, and HEL cells. Tumor necrosis factor (TNF) significantly inhibited CFU-E and BFU-E growth at concentrations as low as 10(-11)-10(-12) M (0.2 U/ml), although erythroid colony and burst formation were not totally ablated. Preincubation of marrow samples with TNF for 15 min was sufficient to suppress erythroid colony and burst formation. Addition of TNF after the start of culture inhibited CFU-E- and BFU-E-derived colony formation if TNF was added within the first 48 h of culture. Additionally, TNF inhibited the growth of highly purified erythroid progenitors harvested from day 5 BFU-E. The colonies which formed in cultures treated with TNF were significantly smaller than those formed in control cultures. TNF (10(-8)-10(-10) M) also suppressed the growth of the hematopoietic cell lines K562, HL60, and HEL cells, with 40%-60% of the cells being sensitive to TNF. Preincubation of HL60 cells with TNF for 15 min significantly inhibited their growth. K562, HL60, and HEL cells expressed high-affinity receptors for TNF in low numbers (6000-10,000 receptors per cell). Fluorescence-activated cell sorter analysis of TNF binding to HEL cells demonstrated that the majority of these cells expressed TNF receptors. These data suggest that: (1) TNF is a rapid irreversible and extremely potent inhibitor of CFU-E, BFU-E, and hematopoietic cell lines K562, HL60, and HEL cells; (2) TNF appears to be acting on a subpopulation of erythroid cells, predominantly CFU-E, BFU-E, and possibly proerythroblasts; (3) TNF appears not to require accessory cells such as lymphocytes or macrophages to inhibit erythroid progenitors; and (4) the presence of TNF receptors on hematopoietic cells is not sufficient to confer sensitivity to TNF since the majority (80%-95%) of HEL cells express TNF receptors while only 40%-60% are inhibited by TNF.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center