Format

Send to

Choose Destination
J Strength Cond Res. 2017 Feb 8. doi: 10.1519/JSC.0000000000001836. [Epub ahead of print]

The high-bar and low-bar back-squats: A biomechanical analysis.

Author information

1
1Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand 2High Performance Sport New Zealand (HPSNZ), Auckland, New Zealand.

Abstract

No prior study has compared the joint angle and ground reaction force (Fv) differences between the high-bar back-squat (HBBS) and low-bar back-squat (LBBS) above 90% 1RM. Six male powerlifters (height: 179.2 ± 7.8 cm; bodyweight: 87.1 ± 8.0 kg; age: 27.3 ± 4.2 years) of international level, six male Olympic weightlifters (height: 176.7 ± 7.7 cm; bodyweight: 83.1 ± 13 kg; age: 25.3 ± 3.1 years) of national level, and six recreationally trained male athletes (height: 181.9 ± 8.7 cm; bodyweight: 87.9 ± 15.3 kg; age: 27.7 ± 3.8 years) performed the LBBS, HBBS, and both LBBS and HBBS (respectively) up to and including 100% 1RM. Small to moderate (d = 0.2-0.5) effect size differences were observed between the powerlifters and Olympic weightlifters in joint angles and Fv, although none were statistically significant. However, significant joint angle results were observed between the experienced powerlifters/weightlifters and the recreationally trained group. Our findings suggest that practitioners seeking to place emphasis on the stronger hip musculature should consider the LBBS. Also, when the goal is to lift the greatest load possible, the LBBS may be preferable. Conversely, the HBBS is more suited to replicate movements that exhibit a more upright torso position, such as the snatch and clean, or to place more emphasis on the associated musculature of the knee joint.

Supplemental Content

Full text links

Icon for Wolters Kluwer
Loading ...
Support Center