Format

Send to

Choose Destination
Sci Total Environ. 2017 May 15;586:152-162. doi: 10.1016/j.scitotenv.2017.01.193. Epub 2017 Feb 4.

Urinary concentrations of 25 phthalate metabolites in Brazilian children and their association with oxidative DNA damage.

Author information

1
Laboratório de Toxicologia e Essencialidade de Metais, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil; Wadsworth Center, New York State Department of Health, Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY 12201, United States. Electronic address: bruninfarma@usp.br.
2
Wadsworth Center, New York State Department of Health, Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY 12201, United States; Department of Chemistry, The Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway. Electronic address: alexandros.asimakopoulos@ntnu.no.
3
Laboratório de Toxicologia e Essencialidade de Metais, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil. Electronic address: fbarbosa@fcfrp.usp.br.
4
Wadsworth Center, New York State Department of Health, Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY 12201, United States; Biochemistry Department, Faculty of Science, Bioactive Natural Products Research Group, King Abdulaziz University, Jeddah, Saudi Arabia. Electronic address: kurunthachalam.kannan@health.ny.gov.

Abstract

Exposure of humans to phthalates has received considerable attention due to the ubiquitous occurrence and potential adverse health effects of these chemicals. Nevertheless, little is known about the exposure of the Brazilian population to phthalates. In this study, concentrations of 25 phthalate metabolites were determined in urine samples collected from 300 Brazilian children (6-14years old). Further, the association between urinary phthalate concentrations and a biomarker of oxidative stress, 8-hydroxy-2'-deoxyguanosine (8OHDG), was examined. Overall, eleven phthalate metabolites were found in at least 95% of the samples analyzed. The highest median concentrations were found for monoethyl phthalate (mEP; 57.3ngmL-1), mono-(2-ethyl-5-carboxypentyl) phthalate (mECPP; 52.8ngmL-1), mono-isobutyl phthalate (mIBP; 43.8ngmL-1), and mono-n-butyl phthalate (mBP; 42.4ngmL-1). The secondary metabolites of di(2-ethylhexyl) phthalate (DEHP), and mEP, mIBP, and mBP were the most abundant compounds, accounting for >90% of the total concentrations. On the basis of the measured concentrations of urinary phthalate metabolites, we estimated daily intakes of the parent phthalates, which were 0.3, 1.7, 1.8, 2.1, and 7.2μg/kg-bw/day for dimethyl phthalate, di-n-butyl phthalate, diisobutyl phthalate, diethyl phthalate, and DEHP, respectively. Approximately one-quarter of the Brazilian children had a hazard index of >1 for phthalate exposures. Statistically significant positive associations were found between 8OHDG and the concentration of the sum of phthalate metabolites, sum of DEHP metabolites, mEP, mIBP, mBP, monomethyl phthalate, mono(3-carboxypropyl) phthalate, monobenzyl phthalate, monocarboxyoctyl phthalate, monocarboxynonyl phthalate, monoisopentyl phthalate, and mono-n-propyl phthalate. To the best of our knowledge, this is the first study to report the exposure of a Brazilian population to phthalates.

KEYWORDS:

Children; Daily intake; Human exposure; Oxidative stress; Phthalates; Risk assessment

PMID:
28174045
DOI:
10.1016/j.scitotenv.2017.01.193
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center