Send to

Choose Destination
See comment in PubMed Commons below
Am J Pathol. 1989 Nov;135(5):801-13.

An immunohistochemical study of neuropeptides and neuronal cytoskeletal proteins in the neuroepithelial component of a spontaneous murine ovarian teratoma. Primitive neuroepithelium displays immunoreactivity for neuropeptides and neuron-associated beta-tubulin isotype.

Author information

Department of Pathology, University of Virginia School of Medicine, Charlottesville 22908.


Approximately one third of the female mice of the LTXBO strain develop spontaneous ovarian teratomas. These tumors contain a large neuroepithelial component, which includes primitive neural structures resembling embryonic neural tubes (medulloepithelial rosettes), ependymoblastic and ependymal rosettes, neuroblasts, mature ganglionic neurons, myelinated neurites, and astrocytes. The purpose of this study was to characterize these tumors according to the immunohistochemical location of some well-characterized trophic and regulatory neuropeptides and neurotransmitters, several neuronal-associated cytoskeletal proteins, and other proteins indicative of neuronal and glial differentiation. Medulloepithelial rosettes showed focal serotonin-like, opioid peptide-like and gamma-amino butyric acid-like immunoreactivity, and displayed immunostaining for the neuron-associated class III beta-tubulin isotype. The mature ganglion cells were also immunoreactive for these markers, and, in addition, for somatostatin, cholecystokinin, bombesin, glucagon, vasoactive intestinal peptide, and neuropeptide Y. Mature ganglion cells were also immunoreactive for proteins associated with the neuronal cytoskeleton (including microtubule-associated proteins, MAP2 and tau, and higher molecular weight phosphorylated and non-phosphorylated neurofilament subunits), neuron-specific enolase, and synaptophysin. Undifferentiated stem cells, ependymoblastic and ependymal rosettes, and astroglia all stained with a monoclonal antibody that recognizes all mammalian beta-tubulin isotypes, but did not react with antibodies to neuronal-associated cytoskeletal proteins or neuropeptides. Neuropeptide-like immunoreactivity and demonstration of the class III beta-tubulin isotype indicate early neuronal commitment in neoplastic primitive neuroepithelium. These patterns of immunoreactivity closely follow those encountered in the normal neurocytogenesis of the mammalian and avian forebrain, and increase the precision with which the early stages of progressive neuroepithelial differentiation can be analyzed in human embryonal tumors of the CNS.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Support Center