Format

Send to

Choose Destination
J Chem Inf Model. 2017 Mar 27;57(3):417-427. doi: 10.1021/acs.jcim.6b00465. Epub 2017 Feb 25.

Phantom PAINS: Problems with the Utility of Alerts for Pan-Assay INterference CompoundS.

Author information

1
Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina 27599, United States.

Abstract

The use of substructural alerts to identify Pan-Assay INterference compoundS (PAINS) has become a common component of the triage process in biological screening campaigns. These alerts, however, were originally derived from a proprietary library tested in just six assays measuring protein-protein interaction (PPI) inhibition using the AlphaScreen detection technology only; moreover, 68% (328 out of the 480 alerts) were derived from four or fewer compounds. In an effort to assess the reliability of these alerts as indicators of pan-assay interference, we performed a large-scale analysis of the impact of PAINS alerts on compound promiscuity in bioassays using publicly available data in PubChem. We found that the majority (97%) of all compounds containing PAINS alerts were actually infrequent hitters in AlphaScreen assays measuring PPI inhibition. We also found that the presence of PAINS alerts, contrary to expectations, did not reflect any heightened assay activity trends across all assays in PubChem including AlphaScreen, luciferase, beta-lactamase, or fluorescence-based assays. In addition, 109 PAINS alerts were present in 3570 extensively assayed, but consistently inactive compounds called Dark Chemical Matter. Finally, we observed that 87 small molecule FDA-approved drugs contained PAINS alerts and profiled their bioassay activity. Based on this detailed analysis of PAINS alerts in nonproprietary compound libraries, we caution against the blind use of PAINS filters to detect and triage compounds with possible PAINS liabilities and recommend that such conclusions should be drawn only by conducting orthogonal experiments.

PMID:
28165734
PMCID:
PMC5411023
DOI:
10.1021/acs.jcim.6b00465
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for American Chemical Society Icon for PubMed Central
Loading ...
Support Center