Format

Send to

Choose Destination
J Mol Med (Berl). 2017 May;95(5):513-521. doi: 10.1007/s00109-017-1505-9. Epub 2017 Feb 2.

Antibody-mediated enzyme replacement therapy targeting both lysosomal and cytoplasmic glycogen in Pompe disease.

Author information

1
Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, 27710, USA.
2
Valerion Therapeutics, Concord, MA, 01742, USA.
3
Borneman Consulting, Del Mar, CA, 92014, USA.
4
Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, 27710, USA. baodong.sun@duke.edu.

Abstract

Pompe disease is characterized by accumulation of both lysosomal and cytoplasmic glycogen primarily in skeletal and cardiac muscles. Mannose-6-phosphate receptor-mediated enzyme replacement therapy (ERT) with recombinant human acid α-glucosidase (rhGAA) targets the enzyme to lysosomes and thus is unable to digest cytoplasmic glycogen. Studies have shown that anti-DNA antibody 3E10 penetrates living cells and delivers "cargo" proteins to the cytosol or nucleus via equilibrative nucleoside transporter ENT2. We speculate that 3E10-mediated ERT with GAA will target both lysosomal and cytoplasmic glycogen in Pompe disease. A fusion protein (FabGAA) containing a humanized Fab fragment derived from the murine 3E10 antibody and the 110 kDa human GAA precursor was constructed and produced in CHO cells. Immunostaining with an anti-Fab antibody revealed that the Fab signals did not co-localize with the lysosomal marker LAMP2 in cultured L6 myoblasts or Pompe patient fibroblasts after incubation with FabGAA. Western blot with an anti-GAA antibody showed presence of the 150 kDa full-length FabGAA in the cell lysates, in addition to the 95- and 76 kDa processed forms of GAA that were also seen in the rhGAA-treated cells. Blocking of mannose-6-phosphate receptor with mannose-6-phosphate markedly reduced the 95- and the 76 kDa forms but not the 150 kDa form. In GAA-KO mice, FabGAA achieved similar treatment efficacy as rhGAA at an equal molar dose in reducing tissue glycogen contents. Our data suggest that FabGAA retains the ability of rhGAA to treat lysosomal glycogen accumulation and has the beneficial potential over rhGAA to reduce cytoplasmic glycogen storage in Pompe disease.

KEY MESSAGES:

FabGAA can be delivered to both the cytoplasm and lysosomes in cultured cells. FabGAA equally reduced lysosomal glycogen accumulation as rhGAA in GAA-KO mice. FabGAA has the beneficial potential over rhGAA to clear cytoplasmic glycogen. This study suggests a novel antibody-enzyme fusion protein therapy for Pompe disease.

KEYWORDS:

3E10 Fab; Cytoplasmic glycogen; Enzyme replacement therapy; Fusion protein; Pompe disease; Recombinant human acid α-glucosidase

PMID:
28154884
DOI:
10.1007/s00109-017-1505-9
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center