Format

Send to

Choose Destination
Sci Rep. 2017 Jan 31;7:41658. doi: 10.1038/srep41658.

Macroscopic liquid-state molecular hydrodynamics.

Author information

1
The University of North Carolina at Charlotte, Department of Mechanical Engineering and Engineering Science, Charlotte, NC, 28223, USA.

Abstract

Experimental evidence and theoretical modeling suggest that piles of confined, high-restitution grains, subject to low-amplitude vibration, can serve as experimentally-accessible analogs for studying a range of liquid-state molecular hydrodynamic processes. Experiments expose single-grain and multiple-grain, collective dynamic features that mimic those either observed or predicted in molecular-scale, liquid state systems, including: (i) near-collision-time-scale hydrodynamic organization of single-molecule dynamics, (ii) nonequilibrium, long-time-scale excitation of collective/hydrodynamic modes, and (iii) long-time-scale emergence of continuum, viscous flow. In order to connect directly observable macroscale granular dynamics to inaccessible and/or indirectly measured molecular hydrodynamic processes, we recast traditional microscale equilibrium and nonequilibrium statistical mechanics for dense, interacting microscale systems into self-consistent, macroscale form. The proposed macroscopic models, which appear to be new with respect to granular physics, and which differ significantly from traditional kinetic-theory-based, macroscale statistical mechanics models, are used to rigorously derive the continuum equations governing viscous, liquid-like granular flow. The models allow physically-consistent interpretation and prediction of observed equilibrium and non-equilibrium, single-grain, and collective, multiple-grain dynamics.

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center